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Abstract

The PANDA code is used to construct tabular equations of state (EOS) for the detonation
products of 24 explosives having CHNO compositions. These EOS, together with a reac-
tive bum model, are used in numerical hydrocode calculations of cylinder tests. The pre-
dicted detonation properties and cylinder wall velocities are found to give very good
agreement with experimental data. Calculations of flat plate acceleration tests for the
HMX-based explosive LX14 are also made and shown to agree well with the measure-
ments. The effects of the reaction zone on both the cylinder and flat plate tests are dk-
cussed. For TATB-based explosives, the differences between experiment and theory are
consistently larger than for other compositions and may be due to nonideal (finite diame-
ter) behavior.
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1. Introduction

1.1 Background

The accurate a priori prediction of equations of state (EOS) for the detonation products of
high explosives (HE) has been one of the principal aims of explosives research for many
years. The empirical JWL (Jones-Wilkins-Lee) EOS formula [1], although very popular
and useful, does not provide this predictive capability because it must be fit to experimen-
tal data for each new explosive composition. Theoretical “chemical” EOS models, on the
other hand, have been shown to give reasonable predictions of explosive detonation prop-
erties [2]-[9]. Until recently, however, the chemical models did not offer enough accuracy
to be satisfactory alternatives to JWL, even after the model parameters had been adjusted
to fit experimental data [ 10].

To be truly viable as a predictive tool, a theoretical model should give accurate results for
the following properties:

1. The steady-state detonation velocity, including its dependence upon loading
density and systematic variations in chemical composition of the explosive.

2. The pressure and temperature at the Chapman-Jouguet (CJ) state, i.e. the point
of complete decomposition at the end of the reaction zone. (These quantities
usually cannot be determined as accurately as the detonation velocity [10].)

3. The expansion behavior of the detonation products behind the detonation front,
normally studied using cylinder tests and other hydrodynamic experiments [1].

4. The overdriven Hugoniot, i.e. the shock properties of the detonation products
compressed above the CJ point [11].

In this report we will consider a chemical model for calculating the EOS of explosive det-
onation products that was first presented at the Eighth Detonation Symposium [7]. This
model is available in the PANDA code [12] and will be referred to here as “the PANDA
model.” References [7] and [8] showed that the PANDA model gives very good predic-
tions of the detonation properties and the overdriven Hugoniots for explosives having
CHNO compositions. We will show that it also gives good predictions for the expansion
behavior by comparing it with cylinder test data for 24 explosives.

1.2 The Cylinder Test - a Review

A cylinder test measures the radial expansion of a stick of explosive that is enclosed in a
metal tube and detonated at one end. The most common configuration used at Lawrence
Livermore National Laboratory [ 1][ 10] employs a 30 cm length of explosive with a l-in
diameter, enclosed in a copper tube of thickness 0.26 cm. The radius of the tube as a func-
tion of time is recorded at a distance 21 cm from the point of detonation, using a streak
camera. The velocity history of the expanding tube is especially important, because the

.

*

.

●

6



Introduction

velocity is closely related to the energy of the expanding gases. Until recently, the velocitY
history was determined by differentiation of the radius vs. time curve. The velocity  can
now be determined more precisely using Fabry-perot interferometers [ 10].

Experiments on larger diameter sticks have also been carried out to investigate time-de-
pendent effects [1]. The results for most explosives satisfy hydrodynamic sc~ing, at leut
to within experimental error, showing that the l-in  test approximates infinite diameter be-
havior. k such cases, it is reasonable to conclude that the cylinder test results depend only
on the detonation product EOS, i.e., that they me insensitive to reaction rate effects. HOW-
ever, some explosives with long reaction zones do exhibit diameter effects that are indica-
tive of time-dependent behavior.

JWL EOS fits for explosive detonation producw me USUdly determined by making hydro-
code calculations of the cylinder test and adjusting the parameters until satisfactory agree-
ment with measured velocity vs. radius curve is obtained [1] [ 10]. The fit parameters are
usually also constrained to match the experiment detonation velocity and pressure. The
test data are normally obtained to 2.5-fold exp~sion  of the cylinder, thereby defining the
EOS to about 7-fold volume expansion. Since the products expand adiabatically, a single
cylinder test only measures the adiabat through the CJ point for a single initial density. In
principle, the detonation product EOS should be be capable of predicting the cylinder test
results for any initial density. In practice, however, separate JWL fits have to be made for
each case. This fact shows that the JWL formula, which assumes a constant specific heat
and Griineisen  parameter, gives only an approximate representation of states off the CJ
adiabat.

The importance of the cylinder test as a diagnostic tool is illustrated by the fact that theo-
retical EOS models frequently fail to give satisfactory predictions of the results. Souers
and Kury [10] recently compared finite element calculations made using different EOS
models with cylinder test data for 19 homogeneous explosives. All three theoretical mod-
els considered exhibited significant discrepancies (as high as 20-30% in some cases) with
the cylinder test data. The predicted detonation velocities were much better. Hence the
ability of a model to predict the CJ detonation properties does not guarantee its abililty  to
predict the detonation product expansion.

1.3 Theoretical EOS Model

In the PANDA model, separate EOS tables are first constructed for each of the chemical
species that are to be allowed in the detonation products. For CHNO compositions, the
princip~  species are: C02, N2, H20, CO, NO, NH3, CH4, H2, 02, HCOOH (formic acid),
atomic N, O, and H, and three forms of condensed carbon - graphite, diamond, and liquid
carbon. Fluid perturbation theory [13] is used for all species except for solid carbon. Next,
the ideal mixing model is used to compute the thermodynamic functions for a mixture of
these species, and the composition of the system is determined from assumption of chem-
ical equilibrium. The same library of EOS tables for the chemical species is used for all
explosive compositions. Hence the only input parameters required by p~A Me the
chemical formula CWHXNYOZ and the heat of formation for the unreacted  explosive. (The
model has not yet been extended to allow elements other than C, H, N, and 0.)

7
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The principal conclusions of previous work are as follows.

● The ideal mixing approximation gives Surprisingly accurate results, not only for
detonation products, but also when compared with Monte Carlo simulations of
mixtures [8][ 14]. As a result, more realistic EOS can be used for complicated
chemical species than would be possible with mixture theories based upon sim-
ple intermolecular pair potentials.

● Formic acid is a very important reaction product for explosives having a nega-
tive oxygen balance, especially for HMX and RDX. The atomic forms of nitro-
gen and oxygen are are also important in some cases.

● A three-phase model of condensed carbon (graphite, diamond, and liquid) is
necessary for explaining variations in detonation properties with changes in
composition and loading density. ln particular, the transition from graphite to
diamond in TNT at high densities was first predicted in Ref. [7].

● In addition to giving good a priori predictions of detonation velocities, pres-
sures, and temperatures, the model gives very good agreement with Hugoniots
for explosives in the overdrive shock region and Hugoniots of non-explosive
CHNO compounds at pressures high enough to create dissociation.

1.4 Scope of Report

Hydrocode calculations of cylinder tests were made for 24 explosives for which experi-
mental data were available. Calculations were also made for plate impact tests of LX14.

Various features of the computational model are discussed in Sec. 2- the EOS tables for
the detonation products (Sec. 2.1), the hydrocode  input (Sec. 2.2), and the burn model
used to propagate the detonation wave along the cylinder (Sec. 2.3).

The results are discussed in Sec. 3. The calculated detonation properties, presented in Sec.
3.1, are shown to agree very well with experimental data for all of the explosives consid-
ered. For the detonation velocities, which are the most accurately known detonation prop-
erties, the predictions are within - 1.5% of the measurements, on the average. The cylinder
test results are presented in Sec 3.2. The calculated cylinder wall velocities are shown to
agree with the experimental data to within -2.(Z%O,  on the average. In Sec. 3.3, it is shown
that the model  also gives good predictions of the flat plate impact tests for LX14.

.
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2. Calculational Model

2.1 EOS Tables for Detonation Products

EOS tables for the detonation products of the 24 explosives studied were made using the
mixture/chemical equilibrium model in the PANDA code (version 2.06) [12]. The explo-
sive compositions and heats of formation, obtained from Refs. [10], [15], and [16], are
listed in Table 1. For composites and mixtures, the chemical formula was defined in terms
of an arbitrary mass of explosive [15], since only the relative CHNO ratios affect the EOS.
Three of the explosives considered (LX-09, PBX9404, and PBX9502) contain small
amounts of elements other than C, H, N, and O These additional elements were ignored in
the present work.

TABLE 1: Compositions and heats of formation of explosives.

Explosive a Formula b AH~(298K)
(MJ/kg)

BTF
Comp B, Grade A (63% RDX/36%  TNT)
CYCIOtO1,  77/23 (77% RDX/23% TNT)

I-INO#l (60% HNO#O%  DNB)
HNO#12 (60% HN0430% DNIY1O% RDX)
HNs
LX09 (93% HWU4.6% pDNPA/2.4%  FEFO)
LX14 (95.5 %Hh4X/4.5% Es)
NM
NNE (39% NM156% NP/5% ED)
PBX9011 (90% I-IMW1O% Es)
PBX9404 (94% HW3% NC/3% CEF)
PBX9501 (95% HMX/2.5%  Es/2.5% BDNP)
PBX9502 (95% TATB/5% Kel-F)
PETN
RX-23-AA (79% I+yN/21% Hy)
RX-23-AB  (69% HyN/5% Hy/26% H20)
RX-23-AC (32% HyN/68%  Hy)
TATB
TNGU

TNT

a The following abbreviations were used in specifying the compositions for the mixtures:
Es=Estane; Hy=hydrazine; HyN = hydrazine  nitrate.

b Elements other than C, H, N, and O were not included in making the EOS tables.

C[6]N[6]O[6]
C[2.03]H[2.64]N[2. 18]0[2.67]
C[1.75]H[2.59]N[2.38]O[2.691
C[4]H[8]N[8]O[81
C[6]N[6]O[12]
C[l.2]H[1.6]N[1 .2]0[3.2]
C[l.0]H[l.6]N[1 .3]0[3.3]
C[14]H[6]N[6]O[12]
C[l .43] H[2.74]N[2.59]O[2.72]F[.02]
C[1.52]H[2.92]N[2.59]O[2.661
C[1]H[3]N[1]O[2]
C[2.0]H[5.2]N[1  . 1]0[1 .9]
C[l.73]H[3.18]N[2.45] 0[2.61]
C[l.40]H[2.75]N[2.57]  0[2.69]C1[.03]P[ .01]
C[l.47]H[2.86]N[2.60] 0[2.691
C[2.30]H[2.23]N[2.21  ]0[2.211C1[.0381  F[.131
C[5]H[8]N[4]O[12]
H[4.6]N[2.6]0[1.7]
H[3.2]N[1.2]0[1.6]
H[4.1]N[2.1]010.4]
C[6]H[6]N[6]O[6]
C[4]H[2]N[8]O[1O]
C[1]N[4]O[8]
C[7]H[5]N[3]O[6]

+2.387
+0.0538
+0.145
+0.253 1
+0.1887
-1.711
-1.676
+0.174
+0.0838
+0.0628
-1.849
-1.908
-0.170
+0.0033 1
+0.0954
-0.8715
-1.7031
-1.824
-5.415
+0.1635
-0.5971
+0.1559
+0.276
-0.295
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The PANDA input file for PBX9404, which is typical of that used in all cases, is shown in
Appendix A. The detonation products were treated as a mixture of 16 chemical species as
described in Sec 1.3. EOS tables for these species had previously been constructed and
saved on a data file, as described in Ref. [8]. This same file was used for all explosives, so
that only the chemical formula CWHXNYOZ and the heat of formation of the unreacted  ex-
plosive differed from case to case.

The detonation product EOS were tabulated on a rectan ular density-temperature grid
5covering the range from 0.0 l<pS5.O g/cm3 and from 10 ~<104K, equally spaced in

log(p) and log(T), along with points at p=O and T=298K. For some explosives, extra den-
sities and temperatures were added in the vicinity of the CJ point to improve resolution
and give better results for the detonation properties.

2.2 CTH Calculations

Numerical calculations of the cylinder tests were made using the Eulerian code CTH [17]-
[20]. The CTH input file for PBX9404, listed in Appendix B, is typical of those used for
tests with a l-in (2.54 cm) diameter and 0.26 cm wall thickness. A 15-cm length of explo-
sive was used in calculations of the 1-in diameter tests. The radial velocity of the cylinder
wall was recorded using tracer particles located near the outside of the copper tube at 7.0,
8.0, and 9.0 cm along the axis from the initiation surface. In order to simulate the experi-
mental conditions, the tracers were only allowed to move in the radial direction; their axial
positions were held constant using the “FIXED=Y” option. The fact that the tracers gave
nearly identical results for the cylinder wall velocity history showed that steady state con-
ditions had been reached at these positions. For calculations of 2-in cylinder tests, an addi-
tional length of 2-5 cm was needed to obtain steady state conditions.

Good resolution of the copper cylinder wall motion was obtained using 0.02-cm zones in
the radial direction (13 zones across the tube wall). To minimize computing time, 0.05-cm
thick zones were used in the axial direction from 5.0 to 10.0 cm (the region encompassing
the tracers), with graded zones at the beginning and end of the stick. Note that this zoning
scheme leads to cells with a 2.5:1 aspect ratio in the central part of the problem, a condi-
tion which can give poor results in Eulerian calculations and is not recommended for gen-
eral use. Nevertheless, the results were found to be satisfactory in this work because of the
fact that the axial and radial flows are nearly independent in cylinder tests. To test the zon-
ing approximations, calculations also were made using 1:1 aspect ratios, using both 0.02-
cm and 0.05-cm zone sizes. These tests showed that the use of non-square zoning did not
cause any appreciable error. The zone size studies show that the zoning used here is more
than adequate to match the precision of most of the experimental measurents.  However,
much finer zoning would be needed to resolve the ringing behavior in the early time mo-
tion with the precision that can be obtained using Fabry-Perot interferometry [2 1 ].

The CTH calculations of the flat plate experiments [21], which are discussed in Sec. 3.3,
required much finer zoning than did the cylinder tests because the copper thicknesses were
much smaller. A sample CTH input file for one of the plate tests is listed in Appendix C,
and further details are given in Sec. 3.3.
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Calculational  Model

The copper, in both the cylinder and flat plate tests,  was treated using the Mie-Gfineisen
EOS and the elastic-perfectly plastic model with a yield strength of 0.35 Gpa ~d pois-
son’s ratio of 0.35. To test this approximation, a few calculations were also made with
more sophisticated constitutive  models [43] [44]; the results did not differ appreciably
from those obtained with the simpler model.

2.3 Burn Model

Although the cylinder expansion behavior is determined primarily by the detonation prod-
uct EOS, reaction rate properties, such w the structure of the reaction zone and curvature
of the wave front, can also influence the resulw. In this work the explosives were initiated
by a 1.3-cm long “booster” and burned using the history variable reactive bum model
(HVRB) [20]. The detonation of the booster was modeled using the JWL EOS and the
CTH programmed bum option [19].

In the HVRB model, the EOS for the partially reacted explosive is given by the expres-
sions [20]

P(p,l”,k) = (1-k) Pi(p,7?+LPf(Pj  T) (1)

and

E(p, T,k) = (l-k) Ei(p, T)+ LE’’(p, T). (2)

Here PJ and Ef describe the detonation products and are calculated from the tabular EOS
discussed in Sec. 2.1. Pi and Ei describe the unreacted explosive and are calculated from
the Mie-Gruneisen formula. The extent of reaction k is given as a function of time t by

l(t) = min(l, $~) , (3)

and

(4)

where the integrand in Eq. (4) is set to zero for P < Pi. The constants PP z, M, and Pi for
each explosive are calibrated from experimental data, and To= 1.0 ~sec. Where possible,
the HVRB parameters used in the cylinder tests calculations were determined by calibrat-
ing the model to wedge test data [15] [ 16], as described in Ref. [20]. For explosives where
no wedge tests were available, the parameters were estimated from other initiation data.
These calibrations will be discussed in separate reports.

In order to evaluate the importance of reaction rate effects on the numerical results, calcu-
lations of a l-in cylinder test of PBX9404 were made using the .JWL EOS with three dif-
ferent bum models. The results are compared with one another and with experimental  data

[161 [221 in l?ig. 1. During the early part of the expansion, the calculation using the HWLB



Cylinder Test Predictions Using Panda EOS

model (solid line) gives higher expmsion velocities than the one using programmed burn
(dotted line). The difference between the two models decreases at later times, although the
HVRB velocity continues to be about 1% higher out to an expansion of 2.0 cm.

The differences are due, at least in pm, to reaction zone effects. The von Neumann spike,
which appears only in the HVRB calculation,  gives a somewhat higher initial push to the
copper tube. A calculation using the CJ volume bum (CJVB) model [20] is also shown in
Fig. 1 (dashed line). The CJVB pammeters  used here were selected so that the detonation
wave had no reaction zone; consequently, the results are close to those for programmed
burn.

The above results tend to suppofi  the usual  assumption that the principal features of the
cylinder wall motion are determined by the detonation product EOS. However, they show
that reaction rate effects do influence the early time behavior and can increase the overall
velocity by as much as 1!%, even at later times. The reactive burn model was much more
important in calculations of the flat plate experiments than in the cylinder tests, because
the copper thicknesses were so much smaller. This problem is discussed in Sec. 3.3.

2.0

15

1.0

0.5

I , , I , , , , i , I
4

0.0 ~ , I , I t I
0.0 1.0 2.0 3.0

( )Radial Distance cm

Fig. 1. Results for a l-in cylinder test of PBX9404. The JWL EOS was used for the
detonation products, and the detonation wave was propagated using programmed
bum (PB), CJ volume bum (CJVB), and history variable reactive burn (HVRB).
The inset figure gives an enlarged view of the region marked by the square. The
discrete points are experimental data, as marked.
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Results

3. Results

3.1 Detonation Properties

Table 2 gives the experimental and calculated detonation velocities, pressures, and tem-
peratures for the 24 explosives considered in this work. The model gives especially good
agreement with the experimental detonation velocities, the most accurately measured
quantities. When the results for TATB and PBX9502 are excluded, the average diffe~nce
between the calculated and experimental values is only -O. 1%, with a standard deviation
of 1.4Y0, which is comparable to the scatter observed in the experimental measurements.

As previously noted in Ref. [7], the calculated detonation velocities for TA~-based  ex-
plosives are higher than the experimental values by about 5%. In Sec. 3.2 it is shown that
a comparable discrepancy is also obtained for the cylinder wall expansion velocities.
These differences are well outside those obtained for the other explosives and are not yet
fully understood. However, some of the discrepancy is undoubtedly due to nonideal be-
havior. The measured detonation velocity for 95% TATB/5%  Kel-F [23][24] is shown as a
function of the reciprocal charge radius in Fig. 2. The curve is concave upward at large ra-
dii, and the ideal (infinite diameter) value has not been attained even for charge diameters
as large as 13 cm. This behavior is different from that seen in other explosives [23], and
the infinite diameter value cannot be obtained accurately by the usual extrapolation meth-
ods. Therefore, the ideal detonation velocities of TA~ and for PBX9502 must be higher
than the values given in Table 2, i.e. closer to the model predictions.

8.0 I I [ I 1

o
+

o
•1

A
t!

&

PBX9502, 24°C

PBX9502,  75°C

PBX9502, –55°C

EDC35, 20”C

EDC35, -40”C

0 0

@
on

o

A o,.40--_A_AJ
. 0.5 1.0 1.5 2.0

1  / R a d i u s  ( c m - ’ )

Fig. 2. Detonation velocity of TATB-based  explosives as a function of reciprocal charge
radius; PBX9502 - [23], EDC35 - [24].
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Cylinder Test Predictions Using Panda EOS

TABLE 2: Experimental and calculated detonation properties.

Initial ----------------Detonation Properties ----------------
Explosive Density DC, (km/S) PCJ (GPa) TCJ (K) Refs.

(g/cm3) expt. Calc. expt. talc. expt. Calc.

BTF
Comp B (Gr. A)
Cyclotol  (77/23)
HMX
HMX
HMX
HNB
HNo3#l
HNo3#2
HNS
HNS
HNS
LX09
LX14
NM
NNE
PBX9011
PBX9404
PBX9501
PBX9502
PETN
PETN
PETN
PETN
RX-23-AA
RX-23-AB
RX-23-AC
TATB
TNGU
TNM
TNT
TNT

1.860
1.720
1.743
1.891
1.630
1.200
1.965
1.542
1.560
1.681
1.402
1.001
1.840
1.835
1<130
1.034
1.770
1.846
1.832
1.890
1.763
1.620
1.510
1.230
1.424
1.356
1.136
1.860
1.885
1.650
1.632
1.400

8.49 8.54
7.99 7.85
8.25 8.18
9.11 9.10
8.08 8.06
6.59 6.73
9.34 9.26
7.23 7.44
7.26 7.37
7.08 7.00
6.34 6.23
5.10 5.18
8.81 8.81
8.83 8.75
6.21 6.22
5.31 5.38
8.50 8.33
8.78 8.84
8.80 8.77

>7.73a 8.10
8.27 8.29
7.85 7.78
7.47 7.40
6.46 6.37
8.64 8.55
7.48 7.39
7.88 7.80

>7.75 a 8.07
9.09

6.45 6.67
6.94 6.94
6.33 6.28

36.0 31.4
29.5 27.4
31.3 29.0
39.0 38.6
27.5 27.7
15.0 15.3
42.5 38.5
21.0 20.4
20.5 19.5
23.0 23.5
16.0 16.2
7.2 7.18
37.7 35.0
37.0 33.8
13.4 11.8
9.0 7.57
29.8 29.4
35.6 35.2

34.0
28.9 26.4
31.5 30.1
26.0 25.4
21.9 21.5
13.8 12.8
21.0 23.0
17.0 15.8
18.1 15.1
25.9 26.9
37.0 35.7
15.5 15.6
21.6 26.1
16.0 13.8

average difference (talc./expt.- 1) -0.l%b -3.9%
standard. deviation 1 .4%b 8.1%

4300.

3470.

4200.
4400.

2900.

4000.
2180.

2840.

3520.

4480.
3620.
3740.
3660.
3950.
4330.
5080.
4620.
4160.
3700.
3960.
3830.
3680.
3580,
3570.
2720.
3420.
3630.
3640.
2730.
4200.
4380.
4480.
4670.
2800.
2360.
2230.
2940.
4250.
2450.
3660.
3690.
-6.3%J
15.8%

[15]

[15]

[16]

[16][26]
[16][26][35]

[16][26]
[10]
[10]
[10]

[10][27]
[10][27]
[10][27]

[15]
[15]

[28][29][35]
[10]
[16]

[28][29]
[28]

[23][29]
[30][33]
[30][35]

[30]
[30]

[10][34]
[10][34]
[10][34]

[16]
[10]

[10][34]
[10][31]

[31][32][37]

a See discussion in the text and Refs. [23] and [24]
b Values computed excluding detonation velocities of PBX9502 and TATB
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The average difference between the calculated and experimental detonation pressures is
.3.9%, with a standard deviation of 8.1%, dl within typical experimental uncetinties.  It
has been shown that measurements of tie detonation pressure are less accurate th~ those
of the detonation velocity and that there me signifk~t  variations in the results obtained by
different methods [10] [25]. The difficulties are due in part to the fact that the CJ state,
which is preceded by the von Neumann spike ~d immediately followed by the Taylor (re-
lease) wave, is not easy to pinpOint, even in numerical simulations. In fact, many of the
“experimental” values given in Table 2 are only estimates based upon cylinder tests [10],
which are not particularly sensitive to the detonation pressure [21]. These matters are dis-
cussed further in Sec. 3.3, where it is shown that the detonation pressure for LX 14 is prob-
ably lower than the value given in Table 2.

Measurements of the detonation temperature are fewer and much less accurate than those
of either the velocity or the pressure. The data for transparent liquids, especially ones hav-
ing a small reaction zone, are the most reliable; measurements for solid explosives have
additional complications due to being opaque and having hot spots [10]. For liquid NM,
Refs. [35] and [36] report 13 experiments giving an average of 3470K, with a standard de-
viation of 190K and a total spread of 780K. Temperature measurements have also been re-
ported for the liquids TNM, RX-23-AA, RX-23-AB,  and RX-23-AC [34]. The reported
measurements for solid PETN [33] [35] [36] [38] show a spread of about 600K and appear
to be reasonable and consistent for initial densities in the range 1.6<poe  1.77. However,
there is a larger spread in the repotied  data for the solids TNT and HMX [35] [36] [37][38].
Moreover, the measurements of Huisheng,  et al. [38], for TNT and HMX at high initial
densities, are inconsistent with the data for lower densities and need to be checked. The
calculated detonation temperatures are well within the experimental uncertainties for all
but one of the explosives shown in Table 2- the experimental value for RX-23-AB,  which
is inconsistent with those for RX-23-AA and RX-23-AC, is likely to be erroneous [3].

3.2 Cylinder Tests

The calculated results for a l-in cylinder test on PBX9404 [ 16][22] are shown in Figs. 3
and 4. Figure 3 compares the velocity vs. radius curves obtained using both the PANDA
EOS and the JWL EOS with the experimental data. The two calculations are almost indis-
tinguishable from one another and in excellent agreement with the measurements at early
times. For radial expansions greater than 1.8 cm, the PANDA EOS predicts slightly higher
velocities and gives better agreement with the data than JWL. For completeness, the ve-
locity vs. time and radius vs. time curves for the PANDA calculation are shown in Figs. 4a
and 4b, respectively. As expected, the agreement here is also excellent.

Calculations for LX14, another HMX-based explosive having a composition and proper-
ties similar to those of PBX9404, are shown in Fig. 5. Velocity vs. radius curves for both a
l-in test [16][2 l]and  also a 2-in test [22] are shown in Fig. 5a. (The wdl thickness was
0.26 cm in both cases.) Once again, the calculated results are in excellent agreement with
the experimental data. Figure 5b compares the calculated velocity VS. time for the 2-in test
with high precision measurements obtained using a Fabry-Perot  interferometer [2 1 ]. Re-
sults obtained with both standard zoning (Ax=O.02 cm, Ay=O.05 cm) and finer zoning
(Ax=O.01 cm, Ay=O.02 cm) are shown. The agreement with experiment is good, although
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Fig. 3. Velocity vs. radius for PBX9404 cylinder test [16] [22]. Calculations using both
PANDA and JWL EOS are shown.
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Fig.5. Cylinder kstdati for LX-14: (a)-veloci~  vs. radius forl-fi tist[l6][22]and2-
in test [2 1]; (b) - velocity vs. time for 2-in test [2 1].

even the more finely-zoned calculation does not resolve the velocity oscillations with as
much precision as the measurements.

Figure 6 shows the effect of additive content on the cylinder test results for three HMX-
based explosives - 100% HMX, PBX-9501  (95% HMX), andPBX9011 (90% HMX). The
additives reduce the cylinder wall velocity of HMX by -670 and - 10’% for PBX9501 and
PBX9011, respectively. The calculations agree quite well with the experimental data
[1][ 16] in all three cases, showing that the model accurately describes effects due to small
changes in chemical composition.

Figure 7 shows the cylinder test results for three RDX-TNT mixtures - pure TNT, Comp
B, Grade A (64% RDX, 36% TNT), and Cyclotol  (77~o RDX, 23?Z0 TNT). Since no cylin-
der test data are available for RDX, the data for HMX are also shown. (The cylinder test
results for RDX and HMX should be identical except for a small effect due to different
loading densities.) Adding RDX to TNT increases the wall velocity by - 15% and -20%
for Comp B and Cyclotol,  respectively. As in Fig. 5, the calculations are in good agree-
ment with the experimental data [1] for all four cases, showing that the model accurately
predicts the effects of variations in explosive composition.

Figure 8 shows cylinder test results for HNS at loading densities ranging from 1.0 to 1.68
g/cm3.  (Note that all of the curves were computed using the same EOS table, instead of
using a separate EOS fit for each density, as is usually done with the JWL formula.) The
calculated wall velocities are slightly higher than the experimental ones [27] (by -290 at
the highest density and by -4$Z0 at the lowest density). However, the model accurately pre-
dicts the drop in cylinder wall velocity with increasing porosity.
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Fig. 6. Cylinder test data for three HMX-based explosives. Experimental data are from
Refs. [1] and [16].
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The cylinder test results for PETN and NM are displayed in Fig. 9. The calculations are
also in very good agreement with the measurements [1] for these two cases.

Figure 1() shows the velocity vs. radius curves for both l-in [16] and 2-in [39] cylinder
tests of the TATB-based explosive, PBX-9502. (The wall thickness was 0.26 cm in both
cases.) The calculated curves have the comect shape but lie above the experimental ones
by -6% and .3% for the l-in and 2-in tests, respectively. These discrepancies are consis-
tent with the results for the detonation velocity and are larger than those obtained for the
other explosives studied.
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Fig. 10. l-in and 2-in cylinder test results for PBX9502.

As noted in Sec. 3.1, TATB-based  explosives exhibit nonideal behavior in that the infinite
diameter detonation velocity is not attained for charge diameters as large as 13 cm
[23] [24]. Nonideal  behavior has also been seen in interface velocity and plate-push exper-
iments on TATB explosives [40][41] [42]. The velocity (or energy) imparted to the target
by the explosive is observed to increase with the length of the charge. Tang [42] has
shown that these data can be reproduced using a two-step reactive burn model; about 85?40
of the energy is released by a fast reaction, which takes 20 ns, while the rest of the energy
is released by a slow reaction that requires an additional 240 ns. The total reaction zone
length in Tang’s model is about 0.2 cm, which is comparable to the wall thickness in the
cylinder tests. The slow reaction must &So play a role in determining the effect of diame-
ter on the detonation velocity and cylinder wall velocity.

,

,

In principle, the effects of nonide~ behavior Cm be treated through the reactive bum mod-
el. However, the HVRB model used here was calibrated using shock initiation data and
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does not include any slow reaction. Therefore it gives only a rough description of the reac-
tion zone. Preliminary calculations show that adding a slow reaction to the HVRB model
does improve the cylinder test predictions. However, a complete study of this problem is
beyond the scope of the present work.

A summary of all the cylinder test calculations is given in Table 3. The wall velocities are
tabulated at radial displacement of 0.6, 1.25, and 1.9 cm, comsponding  to volumetric ex-
pansions of -2, -4, and -7, respectively. In addition to the explosives shown in Figs. 2
through 10, the table gives results for 11 explosives considered in Ref. [10], for which de-
tailed velocity histories were not available to the present authors. Five of these - TA~,
TNGU, NNE, HN03#l,  and HN03#2  - are CHNO compositions. Three of them - BTF,
HNB, and TNM - are CNO compositions. The other three - RX-23-AA, RX-23-AB, and
RX-23-AC - are HNO compositions.

As shown in Table 3, the average difference between the calculated and experimental cyl-
inder wall velocities at 0.6-cm expansion is only 0.290,  with a standard deviation of 2.8Y0.
The results are essentially the same for the 1.25- and 1.90-cm expansions, showing that
the shapes of the velocity vs. radius curves are predicted correctly. As noted above, the
TATB-based explosives show larger deviations than the others, probably because of non-
ideal behavior. HNB, low density HNS, and RX-23-AA also show deviations of -4Y0,
somewhat larger than average.

3.3 Plate Acceleration Tests

Lee, et al. [21] studied the motion of metal walls driven by the HMX-based explosive
LX 14 in flat plate geometries as well as in cylinder tests. They found that the JWL EOS
parameters previously derived from cylinder tests did not give satisfactory results when
used to calculate the flat plate tests. They concluded that the cylinder test measurements
sample the detonation product EOS at densities pcpo (where p. is the initial explosive
density), while the flat plate tests are also sensitive to the EOS at higher compressions,
pocpcpcJ.  They also found that higher plate velocities were obtained for thinner plates,
indicating the influence of the reaction zone. By reducing the CJ pressure from 37 GPa to
36 GPa, they derived a new set of JWL parameters that fit both the cylinder test data and
the plate data for thicknesses greater than 0.05 cm. However, they were not able to fit all
of the thin plate data, even using a reactive burn model.

Figure 11 compares the velocity history calculated using the PANDA EOS with two Fab-
ry-Perot  records for a copper plate of thickness 0.0526 cm, driven by a 1.995-cm thickness
of explosive. The predictions agree very well with the measurements, even though the
PANDA EOS has a CJ pressure of only 33.8 GPa, in contrast to the value of 36 GPa ob-
tained in Ref. [21]. The CTH input file for this problem is given in Appendix C. As dis-
cussed below, the results for this test are much less sensitive to the reactive burn model
than for the tests using thinner plates. This problem was found to be rather sensitive to
zoning; in order to obtain good resolution, a zone size of 0.001 cm was used in the vicinity
of the copper plate, while graded zoning was used in the outer parts of the computational
mesh.
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TABLE 3: Summary of copper cylinder wall velocity calculations. All calculations were
for l-in diameter, 0.26-cm wall thickness, except where indicated. R-% is
the cylinder radius minus the initial radius.

Initial -------------------Wall Velocity (ids)------------------
Explosive Density R-RO=0.6  cm R-~=1 .25 cm R-%=1.9 cm Refs.

(g/cm3) expt. Calc. expt. Calc. expt. Calc.

BTF
Comp B (Gr. A)
Cyclotol  (77/23)
HMX
HMX
HNBa

HNo3#l
HNo3#2
HNS
HNS
HNS
LX09
LX14 (X-0282)
LX14 (2-in)
NMb

NNEb

PBX9011
PBX9404
PBX9501
PBX9502
PBX9502 (2-in)
PETN
PETN
PETN
RX-23-AAb
RX-23-AB
RX-23-AC
TATBb

TNGU
TNM
TNTb

1.852
1.717
1.754
1.894
1.188
1.965
1.542
1.560
1.681
1.402
1.001
1.840
1.835
1.835
1.13
1.034
1.770
1.840
1.834
1.894
1.880
1.765
1.498
1.266
1.424
1.356
1.136
1.83
1.885
1.650
1.632

1.605 1.634
1.439 1.447
1.516 1.519
1.650 1.649
1.173 1.149
1.700 1.600
1.295 1.279
1.210 1.245
1.255 1.283
1.081 1.116
0.817 0.861
1.649 1.595
1.587 1.584
1.963 1.911
1.045 1.047
0.836 0.859
1.504 1.508
1.603 1.588
1.570 1.590
1.301 1.364
1.565 1.624
1.560 1.524
1.355 1.306
1.156 1.145
1.320 1.299
1.080 1.052
1.075 1.072
1.300 1.362
1.600 1.558
1.000 1.019
1.210 1.231

average difference (talc./expt.-l) +0.2%
standard. deviation 2.8%

1.755 1.770
1.556 1.588
1.640 1.652
1.820 1.800
1.314 1.287
1.880 1.808

1.452
1.370 1.400
1.385 1.416
1.207 1.239
0.931 0.967
1.758 1.743
1.713 1.726
2.152 2.140
1.180 1.165
0.935 0.960
1.633 1.637
1.734 1.737
1.707 1.734
1.398 1.475
1.759 1.809
1.705 1.670
1.510 1.465
1.304 1.295
1.473 1.401
1.180 1.145
1.170 1.162
1.403 1.480
1.750 1.703
1.095 1.103
1.355 1.362

+0.370
2.6%

1.835 1.839
1.640 1.648
1.695 1.714
1.883 1.860
1.384 1.348
1.955 1.885

1.531
1.470

1.458 1.476
1.266 1.294
0.981 1.013
1.828 1.804
1.777 1.787
2.260 2.249
1.230 1.219
0.990 1.010
1.681 1.697
1.793 1.796
1.776 1.795
1.435 1.520
1.827 1.885
1.790 1.739
1.590 1.538
1.382 1.364
1.520 1.446
1.210 1.184
1.220 1.195
1.453 1.530
1.825 1.775
1.130 1.135
1.410 1.420

0.0%
2.6%

[10]
[1]
[1]

[1][10]
[10]
[10]
[10]
[10]
[27]
[27]
[27]
[22]

[16][22]
[21]

[1][10]
[10]
[1]

[16][22]
[16]
[16]
[39]

[1][10]
[10]
[10]
[10]
[10]
[10]
[10]
[10]
[10]

[1][10]

a Experimental data are for 3/4-in diameter, scaled to l-in [10].
b Experimental data are for 2-in diameter, scaled to l-in [10].
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Fig. 11. LX14 flat plate tests #9633 and 9634 of Ref. [21]. HE thickness - 1.995 cm,
copper thickness -0.0526 cm, zone size -0.001 cm in vicinity of copper plate.

Analysis of the flat plate experiments illustrates the difficulty of obtaining the CJ pressure
from experimental data. The plate motion at early times is determined primwily by the
leading part of the detonation wave (including the reaction zone), while the motion at later
times depends upon the detonation product expansion and also the thickness of the explo-
sive. Figure 12 shows the initial acceleration of the copper plate (the first plateau in the ve-
locity time history), for the 19 experiments reported in Ref. [21]. It can be seen that the
initial velocity is -2. 1+-O. 1 km/s, independent of thickness, for thicknesses greater than
0.01 cm, indicating that the reaction zone has a relatively small effect. However, the high-
er velocity obtained for a thickness of 0.0025 cm suggests the presence of a von Neumann
spike. The ratio R of the copper thickness to the explosive thickness is also indicated.
There is no correlation with explosive thickness within the scatter in the data.

The initial plate velocity can be estimated by impedance matching, using the diagram
shown in Fig. 13. The Hugoniot for the explosive detonation products is shown by the sol-
id line, with the CJ state denoted as point A. The initial shock state in the copper plate,
point B, corresponds to the intersection of the copper Hugoniot with the second shock
Hugoniot for the detonation products. The free surface velocity of the copper plate corre-
sponds to zero pressure on the copper release curve, point C. Using the PANDA EOS for
the detonation products and the Mie-Griineisen  EOS for copper, the velocity obtained is
2.14 knds, in good agreement with the experimental data, as shown by the dotted line in
Fig. 12. This calculation is only approximate because it ignores the effects of the Taylor
wave and the reaction zone. However, it shows that the plate motion is determined not
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Fig. 12.

Fig. 13.
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Initial acceleration of copper plate for experiments reported in Ref. [21]. R is the
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line shows a velocity of 2.14 km/s, computed as described in the text.
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only by the CJ state, but also by the reshock behavior of the detonation products. That fact
explains why two EOS having quite different CJ pressures can give similar results for the
plate motion.

A reasonable description of the reaction zone is needed for the experiments involving very
thin plates. In the HVRB model, the parameters that have the greatest effect on the reac-
tion zone are the EOS for the unreacted  explosive (which determines the von Neumann
spike pressure) and the constant Pr in Eq. (4) (which determines the overall zone length).
However, the HVRB model was developed primarily for modeling shock initiation phe-
nomena, and Eqs. (1)-(4) were not derived to give an accurate description of the reaction
zone. The values obtained by calibrating the model to shock initiation data, as described in
Sec. 2.3, do not give satisfactory results when extrapolated into the present regime, over-
estimating the effects of the reaction zone on the plate velocity. Since there are no inde-
pendent measurements that can be used to determine the necessary parameters, the value
of Pr was adjusted to match the initial velocity of a 0.00254 cm copper plate, while the
other bum parameters were unchanged from their original values. The adjusted value of Pr
(about 1/5 of the original value) was used in the calculation shown in Fig. 11; the veloci-
ties obtained using the original value of Pr were -3% higher.

Figure 14 compares the calculated curves with experimental data for a 0.00254 cm copper
plate, using the adjusted value of Pr The theoretical results agree with measurements at
both early times, as expected, and also at late times, where the velocity depends on the det-
onation product expansion and the explosive thickness. The results for an intermediate
copper thickness of 0.0126 cm are shown in Fig. 15. The calculated velocities are in satis-
factory agreement with experiment, given the scatter in the data (data for the other tests at
this thickness show variations of-4% [21]).

The fact that the PANDA model gives good agreement with both flat plate and cylinder
tests, which sample different regions of the” EOS surface, is further evidence of its general-
ity. It may be possible to improve the calculations for thin plates by refining the reactive
bum model.
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Fig. 14. LX 14 flat plate test #9643 of Ref. [21]. HE thickness - 2.558 cm, copper
thickness -0.00254 cm, zone size -0.0002 cm in vicinity of copper plate.
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Fig. 15. LX 14 flat plate test #9526 of Ref. [21]. HE thickness - 1.997 cm, copper
thickness -0.0126 cm, zone size -0.0005 cm in vicinity of copper plate.
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Summary and Conclusions

4. Summary and Conclusions

Accurate EOS for explosive detonation products, and the means for using these EOS in
hydrocode calculations, are needed in many practical applications which involve the mod-
eling of explosives and other energetic materials. Until recently, analysts have often had to
rely on simple analytical EOS formulas for the study of complicated problems. A sophisti-
cated tabular EOS package and reactive burn model [20], which was recently developed
for the CTH hydrocode, offers a more realistic treatment of explosives than was previous-
ly available. This capability has been used in the present study.

The present work and previous studies [7][8] have demonstrated that the PANDA code
can be used to construct accurate a priori EOS for the detonation products of CHNO ex-
plosives. The PANDA EOS are in very good agreement with experimental detonation
properties, overdriven shock data, cylinder test expansion measurements and plate push
tests. Hence one advantage of the PANDA code is that it provides a way to predict the
EOS for new compositions. By contrast, the analytic JWL formula must be fit to experi-
mental data for each explosive.

It is equally important to recognize that the PANDA code predicts a very different EOS
surface from the one obtained with the JWL formula, even though the two models may
give comparable results for cylinder tests. Because the PANDA model incorporates the
fundamental physics and chemistry of the problem, it is reliable over a wide range of con-
ditions. By contrast, it is well known that JWL parameters obtained from cylinder tests of-
ten give poor results in plate push tests, in overdriven shock experiments, and in other
problems outside the region of calibration [ 11][21]. These difficulties arise because of the
simplicity of the JWL expression, i.e. the use of a constant specific heat and Gri.ineisen pa-
rameter. The availability of a tabular EOS package eliminates the need to fit the EOS to an
analytic function.

Reactive burn phenomena have been relegated to a secondary role in the present study, but
certain points should be noted. Frost, the predicted detonation properties and cylinder wall
velocities for TATB-based explosives show larger discrepancies with experiment than do
the other explosives. Some of these discrepancies are clearly due to nonideal  behavior,
which has been observed in the effect of diameter on detonation velocity [23] [24] and the
effect of charge length on the energy imparted to a target [40] -[42]. Second, the velocity
histories of thin plates accelerated by LX 14 also show effects due to the reaction zone
[21]. These problems show that the detonation product EOS can be separated from reac-
tive burn phenomena only to a first approximation. However, a full analysis of reactive ef-
fects would have required more time than could be devoted to the present study.
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Appendix A

PANDA Input File for PBX9404

l*************** ***************  ***************  ***************  ***********

j

! 06/18/93 - EOS for detonation products of PBX-9404.
! PBX-9404 is 94% HMX, 3% NC, 3% CEF by weight-
! Formula - c[l.40]h[2  .75]n[2.57]o[2 .69]cl[.03]p[ .01] (100 g of
! explosive) - the c1 and p are ignored in this setup.
! heat of formation (298K) = 0.00331 (Dobratz and Crawford)
!
! Energy zero of EOS tables is assumed to give zero enthalpy for
! elements in their standard states at 1 atm and 298K. Energy zero
! for table is unreacted explosive at 298K.
!
l*************** *************** *************** *************** ***********
!

! htf is (-) heat of formation,
! mc, mh2, mn2, a n d  m o 2  a r e  m o l e s  o f  c ,  h 2 ,  n 2 ,  a n d  0 2 .
!

s y m  htf=–.0033l  mc=l.40 mh2=l.375  mn2=l.285  mo2=l.345
!

mod mix ezro=htf
C[1]O[2] ! carbon dioxide
matid.201 name.co2 file=hesps eshift=-9.1552

n[2] ! molecular nitrogen
matid=202 name=n2 file=hesps eshift.–.30900 moles.mn2

h[2]o[l] ! water
matid=203 name=h20 file=hesps eshift=-13 .971

C[l]o[l] ! carbon monoxide
matid=204 name=co file=hesps eshift=-4.2551

c[l]h[4] ! methane
matid.205 name=ch4 file=hesps eshift=-5.2897

n[l]h[3] ! ammonia
matid=206 name=nh3 file=hesps eshift=-3.2789

h[2] ! molecular hydrogen
matid=207 name=h2 file=hesps eshift=–4.1866  moles=mh2

0[2] ! molecular oxygen
matid=208 name=02 file=hesps eshift=–.27085 moles.mo2

n[l]o[l] ! nitric oxide
matid.209 name=no file=hesps ”eshift=2 .7206

h[2]c[l]o[2] ! formic acid
matid.301 name.hcooh file.hesps eshift=-8.4598

C[l] ! graphite
matid=213 name=grp ptyp=.01 file=hesps eshift=59.157 moles=mc

C[l] ! fluid carbon
matid=210 name=clq ptyp..Ol file=hesps eshift=59.157

C[l] ! diamond
matid.214 name=dia ptyp=.01 file=hesps  eshift=60.057

?
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n[l] ! atomic nitrogen
matid=102 name.nl file=hesps eshift=33.294

0[1] ! atomic oxygen
matid=108 name=ol file=hesps eshift=15. 172

h[l] ! atomic hydrogen
matid=107 name=hl file=hesps eshift=210.19

!

! Compute CJ state
!

cj mix
1.84

!

! Make EOS table - use set bas command to find FZ and FW

set bas
c[l.40]h[2 .75]n[2.57] 0[2.69] ! cl[.03]p[  .011 - ignored

isot mix 3.1635 3.1647 20 1 298 0 1 1
slib mix
201
51.320 99.996 67.280 298 3.16
301
0 0 1 1
.01 . 1 5 2
.1 5 45 2

298 1000 2 1
1.e3 1.e4 24 2

Y
298 .29

8211 061893 b8211 a8211
!

! Read table back in and compute CJ properties

mod sol tab=l
8211 b8211
cj sol
1.84 0 0

end
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Appendix B

CTH Input File for PBX9404 Cylinder Test

************** ************** ************** ************** ************** **
*
* CTH Calculation of PBX9404 Cylinder Test
* 07/28/93
*
* 1 in diameter stick of explosive enclosed in 0.26 cm thick Cu tube.
* 15 cm length of explosive, cylinder expansion studied near 8 cm.
* - X-Mesh: uniform 0.02 cm zones out to 4.0 cm (13 zones in Cu),
* then graded region out to 6.0 cm.
* - Y-Mesh: uniform 0.05 cm zones from 5.0 to 10.0 cm, graded zones
* at beginning and end of stick.
* - Histories for recording cylinder expansion at 7, 8, and 9 cm, at
* surface of Cu wall. Histories for recording of arrival times at
* 7, 8, and 9 cm, along cylinder axis.
* - Uses tabular EOS for detonation products of explosive.
* - Uses HVRB model to propagate detonation wave. Explosive is
* initiated by a 1.3 cm booster.
*
************* ************* ************* ************* ************* *******

*eor* genin - CTHGEN input
* Title record
PBX9404 Cylinder Test - Panda EOS, HVRB burn
* Control block
CONTROL
MMP
ENDCONTROL

* Set up geometry and mesh
MESH
BLOCK 1 GEOM=2DC TYPE=E

Xo 0.0
xl W=4 .0 DXF=O.02 DXL.O.02
x2 W=2.O DXF=O.02 DXL=O.07

ENDX
Yo -1.3

Yl W=l.3 DYF=O.25 DYL=O.20
Y2 W=5.O DYF=O.20 DYL=O.05
Y3 W=5.O DYF=O.05 DYL=O.05
Y4 W=5.O DYF=O.05 DYL=O.20

ENDY
XACT 0.0 1.5
YACT -1.3 0.0

ENDB
ENDMESH

* Material insertion inputs
INSERTION of MATERIAL
BLOCK 1
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PACKAGE BOOSTER
MATERIAL 3
INSERT BOX
xl 0.0 x2 1.27
YI -15.0 Y2 0.0

ENDINSERT
ENDPACKAGE
PACKAGE HE
MATERIAL 2
INSERT BOX
xl 0.0 x2 1.27
YI -15.0 Y2 25.0

ENDINSERT
ENDPACKAGE
PACKAGE COPPER CASE
MATERIAL 1
INSERT BOX
Xl 1.27 x2 1.53
Y1 -15.0 Y2 25.0

ENDINSERT
ENDPACKAGE

ENDBLOCK
ENDINSERTION

* EOS input set - new interface
EOS
* Copper - Mie-Gruneisen
MAT1 MGRUN

R0=8.94 CS=3.94E5 s=1.489 GO=l-99 CV=4.56E1O
* PBX9404 Explosive – Panda EOS with HVRB model
MAT2 SESAME EOS=8211 FEOS=’sesame’

RP=l.84 RO=l.873 CS=2.9E5 S=2.0 GO=l.O CV=l.35E11
TYP=2 .0 PR=5.9E1O ZR=2.36 MR=l.5 PI=O.5E1O
RMAx=s-o RMIN=O.1 TMAX=5.O PT=l.0E13

* PBX9404 Explosive - JWL
MAT3 JWL

RO=l.84 AG=8.524 BG=O.1802 CG=O.01207
R1=4.60 R2=1.30 WG=O.38 PCJ=O.370 DCJ=O.880

ENDEOS
* HEBURN input set
HEBURN

MAT 3 D=8.80E5
DL 0.0, -1.3 TO 1.5, -1.3 R=1OO.O TIME=O.O

ENDHE
* Elastic-plastic Input set
E PDATA
MATEP 1 YIELD=3.5E9 POISSON=O.35
MIX 3

ENDE
************** ************** ************** *************** ***************

*eOF* cthin – CTH input
* Title record
PBX9404 Cylinder Test - Panda EOS, HVRB burn
* Control block
CONTROL
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TSTOP = 29. OE-6
RDUMPF = 3600.
CPSHIFT = 999.
NTBAD 100000

ENDC
* Choose f luxing and interface opt ions
CONVCT
CON=l
INT=HIGH
NOFRAGMENT 1
NOFRAGMENT 2

ENDC
* First 3 tracers are near to OD of copper tube
* Second 3 tracers are near to cylinder axis
TRACER

ADD 1.48,7.0 to 1.48,9.0 N=3 FIXED=Y
ADD 0.08,7.0 to 0.08,9.0 N=3

ENDT
* Edit specifications
EDIT
SHORTT

TIME=O.O DT=5.0E-4
ENDS
LONGT

TIME=O.O DT=5.OE-4
ENDL
PLOTT

TIME=O.O DT=5.OE-6
ENDP
HISTT

TIME=O.O DT=5.OE-8
HTRACER1
HTRACER2
HTRACER3
HTRACER4
HTRACER5
HTRACER6

ENDH
ENDE

* Define boundary conditions
BOUNDARY

BHY
BL 1
BXB.O, BXT=I
BYB = 1 , ByT = 1

ENDB
ENDH

ENDB
* Set minimum and maximum time steps
MINDT

TIME = O. DT = 1.E-11
ENDN
MAXDT

TIME = O. DT = .01
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ENDX
* Fracture input set
FRACTS

PRESSURE
PFRAC1 -O.3E1O
PFRAC2 -5.0E6
PFRAC3 -5.0E6
PFMIX -O.3E1O
PFVOID -O.3E1O

ENDF
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Appendix C

CTH Input File for LX14 Plate Acceleration Test

************** ************** ************** ************** ************** **
*
* CTI-I Calculation of LX-14 Plate Experiment #9634
* 08/30/93
* Test data. reported by Lee, et. al., 8th Det. Sym., PP 613-624-
* 1.995 cm thickness of LX-14 accelerates 0.0526 cm Cu plate.
* Explosive initiated by using JWL/progr-ed burn in first 0-2 cm-
* - Mesh: Zones graded from 0.03 cm down to 0.001 cm for first 1.90
* cm, then 0.001 cm zones (53 zones in Cu) for 0.6 cm,
* then graded zones on outer part of mesh.
* _ Panda EOS with HVRB for explosive.
*
*************** *************** *************** *************** ************

*eor* genin – CTHGEN input
* Title record
PL9634 - /2.0 LX-14/->/.O53 Cu/ Panda/HVRB
* Control block
CONTROL
MMP

* CHECKMESH
ENDCONTROL

* Set up geometry and mesh
MESH
BLOCK 1 GEOM=lDR TYPE=E

Xo 0.0

xl W=l.90 DXF=O.030 DXL=O.001
X2 w=O.60 DXF=O.001 DXL=O.001
x3 W=O.50 DXF=O.001 DXL=O.O1O

ENDX
XACT -2-0 0.20

ENDB
ENDMESH

* Material insertion inputs
INSERTION of MATERIAL
BLOCK 1

PACKAGE BOOSTER
MATERIAL 3
INSERT BOX
xl 0.0 x2 0.2

ENDINSERT
ENDPACKAGE
PACKAGE HE
MATERIAL 2
INSERT BOX
xl 0.2 x2 1.9954

ENDINSERT
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ENDPACKAGE
PACKAGE COPPER
MATERIAL 1
INSERT BOX
xl 1.9954

ENDINSERT
ENDPACKAGE

ENDBLOCK
ENDINSERTION

PLATE

X2 2.048

* EOS input set – new interface
EOS
* Copper – Mie-Gruneisen
MAT1 MGRUN

RO=8.94 CS=3-94E5 s=1.489 GO=l.99 CV=4.56E1O
* LX14 Explosive - Panda EOS with HVRB model
MAT2

* LX–14
MAT3

ENDEOS

SESAME EOS=8231 FEOS=’sesame’
RP=l.835 RO=l.850 CS=2.9E5 S=2.0 GO=l.O CV=l.35E11
TYP=2 .0 PR=1.7E1O ZR=2.36 MR=l.5 PI=O.5E1O
RMAX=5.O RMIN=O.01 TMAX=5.O PT=l.0E13
Explosive - JWL
JWL
RO=l.835 AG=8.261 BG=O.1724 CG=O.01296
R1=4.55 R2=1.32 WG=O.38 PCJ=O.370 DCJ=O.880

* HEBURN input set
HEBURN
MAT 3 D=8.80E5
DP 0.0 R=1OO.O TIME=O.O

ENDHE
* Elastic-plastic Input set
EPDATA
MATEP 1 YIELD=3.5E9 POISSON=O.35
MIX 3

ENDE
************** ************** ************** *************** ***************

*eor* cthin – CTH input
* Title record
PL9634 - /2.0 LX-14/->/.O53 Cu/ Panda/HVRB
* Restart instructions
* RESTART
* TIME=2.OE-6
* ENDR
* Control block
CONTROL
TSTOP = 5.0E-6
RDUMPF = 3600.
CPSHIFT = 999.
NTBAD 100000
ENDC

* Choose fluxing and interface options
cONVCT
CON= 1

ENDC
* Edit specifications
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TRACER
ADD 2.0455 to 2.0475 N=3

ENDT
EDIT
SHORTT
TIME=O.O DT=5.Oe-4

ENDS
LONGT
TIME=O.O DT=5.Oe-4

ENDL
PLOTT
TIME=O.O DT=O.5e-6

ENDP
HISTT

TIME=O.O DT=5.E-8
TIME=2.OE-6 DT=5.E-10
HTRACER1
HTRACER2
HTRACER3

ENDH
ENDE

* Define boundary conditions
BOUNDARY

BHY
BL 1
BXB = 1 , BXT = 1

ENDB
ENDH

ENDB
* Set minimum and maximum time steps
MINDT

TIME = 0. DT = 1.E-11
ENDN
MAXDT

TIME = O. DT = -01
ENDX

* Fracture input set
FRACTS

PRESSURE
PFRAC1 -O.3E1O
PFRAC2 -O.3E1O
PFMIX -O.3E1O
PFVOID -O.3E1O

ENDF
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